
Package: GLMMadaptive (via r-universe)
October 15, 2024

Title Generalized Linear Mixed Models using Adaptive Gaussian
Quadrature

Version 0.9-5

Date 2024-06-17

Maintainer Dimitris Rizopoulos <d.rizopoulos@erasmusmc.nl>

BugReports https://github.com/drizopoulos/GLMMadaptive/issues

Description Fits generalized linear mixed models for a single grouping
factor under maximum likelihood approximating the integrals
over the random effects with an adaptive Gaussian quadrature
rule; Jose C. Pinheiro and Douglas M. Bates (1995)
<doi:10.1080/10618600.1995.10474663>.

Imports MASS, nlme, parallel, matrixStats

Suggests lattice, knitr, rmarkdown, pkgdown, multcomp, emmeans,
estimability, effects, DHARMa, optimParallel

Encoding UTF-8

LazyLoad yes

License GPL (>= 3)

URL https://drizopoulos.github.io/GLMMadaptive/,

https://github.com/drizopoulos/GLMMadaptive

VignetteBuilder knitr

RoxygenNote 6.1.1

Repository https://drizopoulos.r-universe.dev

RemoteUrl https://github.com/drizopoulos/glmmadaptive

RemoteRef HEAD

RemoteSha df2d6c2b75d51705534cb04303abfbfc92d8f0af

1

https://github.com/drizopoulos/GLMMadaptive/issues
https://doi.org/10.1080/10618600.1995.10474663
https://drizopoulos.github.io/GLMMadaptive/
https://github.com/drizopoulos/GLMMadaptive

2 Continuation Ratio Set-Up

Contents

Continuation Ratio Set-Up . 2
effectPlotData . 4
Extra Family Objects . 6
GLMMadaptive . 8
marginal_coefs . 9
mixed_model . 11
MixMod Methods . 16
negative.binomial . 22
scoring_rules . 24

Index 26

Continuation Ratio Set-Up

Functions to Set-Up Data for a Continuation Ratio Mixed Model

Description

Data set-up and calculation of marginal probabilities from a continuation ratio model

Usage

cr_setup(y, direction = c("forward", "backward"))

cr_marg_probs(eta, direction = c("forward", "backward"))

Arguments

y a numeric vector denoting the ordinal response variable.

direction character string specifying the direction of the continuation ratio model; "forward"
corresponds to a discrete hazard function.

eta a numeric matrix of the linear predictor, with columns corresponding to the
different levels of the ordinal response.

Note

Function cr_setup() is based on the cr.setup() function from package rms.

Author(s)

Dimitris Rizopoulos <d.rizopoulos@erasmusmc.nl>

Frank Harrell

Continuation Ratio Set-Up 3

Examples

n <- 300 # number of subjects
K <- 8 # number of measurements per subject
t_max <- 15 # maximum follow-up time

we constuct a data frame with the design:
everyone has a baseline measurment, and then measurements at random follow-up times
DF <- data.frame(id = rep(seq_len(n), each = K),

time = c(replicate(n, c(0, sort(runif(K - 1, 0, t_max))))),
sex = rep(gl(2, n/2, labels = c("male", "female")), each = K))

design matrices for the fixed and random effects
X <- model.matrix(~ sex * time, data = DF)[, -1]
Z <- model.matrix(~ 1, data = DF)

thrs <- c(-1.5, 0, 0.9) # thresholds for the different ordinal categories
betas <- c(-0.25, 0.24, -0.05) # fixed effects coefficients
D11 <- 0.48 # variance of random intercepts
D22 <- 0.1 # variance of random slopes

we simulate random effects
b <- cbind(rnorm(n, sd = sqrt(D11)), rnorm(n, sd = sqrt(D22)))[, 1, drop = FALSE]
linear predictor
eta_y <- drop(X %*% betas + rowSums(Z * b[DF$id, , drop = FALSE]))
linear predictor for each category
eta_y <- outer(eta_y, thrs, "+")
marginal probabilities per category
mprobs <- cr_marg_probs(eta_y)
we simulate ordinal longitudinal data
DF$y <- unname(apply(mprobs, 1, sample, x = ncol(mprobs), size = 1, replace = TRUE))

If you want to simulate from the backward formulation of the CR model, you need to
change `eta_y <- outer(eta_y, thrs, "+")` to `eta_y <- outer(eta_y, rev(thrs), "+")`,
and `mprobs <- cr_marg_probs(eta_y)` to `mprobs <- cr_marg_probs(eta_y, "backward")`

###

prepare the data
If you want to fit the CR model under the backward formulation, you need to change
`cr_vals <- cr_setup(DF$y)` to `cr_vals <- cr_setup(DF$y, "backward")`
cr_vals <- cr_setup(DF$y)
cr_data <- DF[cr_vals$subs,]
cr_data$y_new <- cr_vals$y
cr_data$cohort <- cr_vals$cohort

fit the model
fm <- mixed_model(y_new ~ cohort + sex * time, random = ~ 1 | id,

data = cr_data, family = binomial())

summary(fm)

4 effectPlotData

effectPlotData Predicted Values for Effects Plots

Description

Creates predicted values and their corresponding confidence interval for constructing an effects plot.

Usage

effectPlotData(object, newdata, level, ...)

S3 method for class 'MixMod'
effectPlotData(object, newdata,

level = 0.95, marginal = FALSE, CR_cohort_varname = NULL,
direction = NULL, K = 200, seed = 1, sandwich = FALSE,
...)

Arguments

object an object inheriting from class "MixMod".

newdata a data frame base on which predictions will be calculated.

level a numeric scalar denoting the level of the confidence interval.

marginal logical; if FALSE predicted values are calculated for the "mean" subject (i.e.,
the one with random effects values equal to 0). When TRUE marginal predicted
values are calculated using function marginal_coefs.

CR_cohort_varname

a character string denoting the name of the cohort variable when a continuation
ratio model is fitted.

direction the direction argument of cr_marg_probs needs to be provided when CR_cohort_varname
is not NULL.

K numeric scalar denoting the number of Monte Carlo samples from the approxi-
mate posterior of the parameters; applicable only for zero-inflated models.

seed numerical scalar giving the seed to be used in the Monte Carlo scheme.

sandwich logical; if TRUE robust/sandwich standard errors are used in the calculations.

... additional arguments passed to marginal_coefs, e.g., cores.

Details

The confidence interval is calculated based on a normal approximation.

Value

The data frame newdata with extra columns pred, low and upp.

effectPlotData 5

Author(s)

Dimitris Rizopoulos <d.rizopoulos@erasmusmc.nl>

See Also

mixed_model, marginal_coefs

Examples

simulate some data
set.seed(123L)
n <- 500
K <- 15
t.max <- 25

betas <- c(-2.13, -0.25, 0.24, -0.05)
D <- matrix(0, 2, 2)
D[1:2, 1:2] <- c(0.48, -0.08, -0.08, 0.18)

times <- c(replicate(n, c(0, sort(runif(K-1, 0, t.max)))))
group <- sample(rep(0:1, each = n/2))
DF <- data.frame(year = times, group = factor(rep(group, each = K)))
X <- model.matrix(~ group * year, data = DF)
Z <- model.matrix(~ year, data = DF)

b <- cbind(rnorm(n, sd = sqrt(D[1, 1])), rnorm(n, sd = sqrt(D[2, 2])))
id <- rep(1:n, each = K)
eta.y <- as.vector(X %*% betas + rowSums(Z * b[id,]))
DF$y <- rbinom(n * K, 1, plogis(eta.y))
DF$id <- factor(id)

##

Fit a model
fm1 <- mixed_model(fixed = y ~ year * group, random = ~ year | id, data = DF,

family = binomial())

An effects plot for the mean subject (i.e., with random effects equal to 0)
nDF <- with(DF, expand.grid(year = seq(min(year), max(year), length.out = 15),

group = levels(group)))

plot_data <- effectPlotData(fm1, nDF)

require("lattice")
xyplot(pred + low + upp ~ year | group, data = plot_data,

type = "l", lty = c(1, 2, 2), col = c(2, 1, 1), lwd = 2,
xlab = "Follow-up time", ylab = "log odds")

expit <- function (x) exp(x) / (1 + exp(x))
xyplot(expit(pred) + expit(low) + expit(upp) ~ year | group, data = plot_data,

type = "l", lty = c(1, 2, 2), col = c(2, 1, 1), lwd = 2,
xlab = "Follow-up time", ylab = "Probabilities")

6 Extra Family Objects

we put the two groups in the same panel
my.panel.bands <- function(x, y, upper, lower, fill, col, subscripts, ..., font,

fontface) {
upper <- upper[subscripts]
lower <- lower[subscripts]
panel.polygon(c(x, rev(x)), c(upper, rev(lower)), col = fill, border = FALSE, ...)

}

xyplot(expit(pred) ~ year, group = group, data = plot_data, upper = expit(plot_data$upp),
low = expit(plot_data$low), type = "l", col = c("blue", "red"),
fill = c("#0000FF80", "#FF000080"),
panel = function (x, y, ...) {

panel.superpose(x, y, panel.groups = my.panel.bands, ...)
panel.xyplot(x, y, lwd = 2, ...)

}, xlab = "Follow-up time", ylab = "Probabilities")

An effects plots for the marginal probabilities
plot_data_m <- effectPlotData(fm1, nDF, marginal = TRUE, cores = 1L)

expit <- function (x) exp(x) / (1 + exp(x))
xyplot(expit(pred) + expit(low) + expit(upp) ~ year | group, data = plot_data_m,

type = "l", lty = c(1, 2, 2), col = c(2, 1, 1), lwd = 2,
xlab = "Follow-up time", ylab = "Probabilities")

Extra Family Objects Family functions for Student’s-t, Beta, Zero-Inflated and Hurdle
Poisson and Negative Binomial, Hurdle Log-Normal, Hurdle Beta,
Gamma, and Censored Normal Mixed Models

Description

Specifies the information required to fit a Beta, zero-inflated and hurdle Poisson, zero-inflated
and hurdle Negative Binomial, a hurdle normal and a hurdle Beta mixed-effects model, using
mixed_model().

Usage

students.t(df = stop("'df' must be specified"), link = "identity")
beta.fam()
zi.poisson()
zi.binomial()
zi.negative.binomial()
hurdle.poisson()
hurdle.negative.binomial()
hurdle.lognormal()
hurdle.beta.fam()
unit.lindley()

Extra Family Objects 7

beta.binomial(link = "logit")
Gamma.fam()
censored.normal()

Arguments

link name of the link function.

df the degrees of freedom of the Student’s t distribution.

Note

Currently only the log-link is implemented for the Poisson, negative binomial and Gamma models,
the logit link for the beta and hurdle beta models and the identity link for the log-normal model.

Examples

simulate some data from a negative binomial model
set.seed(102)
dd <- expand.grid(f1 = factor(1:3), f2 = LETTERS[1:2], g = 1:30, rep = 1:15,

KEEP.OUT.ATTRS = FALSE)
mu <- 5*(-4 + with(dd, as.integer(f1) + 4 * as.numeric(f2)))
dd$y <- rnbinom(nrow(dd), mu = mu, size = 0.5)

Fit a zero-inflated Poisson model, with only fixed effects in the
zero-inflated part
fm1 <- mixed_model(fixed = y ~ f1 * f2, random = ~ 1 | g, data = dd,

family = zi.poisson(), zi_fixed = ~ 1)

summary(fm1)

We extend the previous model allowing also for a random intercept in the
zero-inflated part
fm2 <- mixed_model(fixed = y ~ f1 * f2, random = ~ 1 | g, data = dd,

family = zi.poisson(), zi_fixed = ~ 1, zi_random = ~ 1 | g)

We do a likelihood ratio test between the two models
anova(fm1, fm2)

###
###

The same as above but with a negative binomial model
gm1 <- mixed_model(fixed = y ~ f1 * f2, random = ~ 1 | g, data = dd,

family = zi.negative.binomial(), zi_fixed = ~ 1)

summary(gm1)

We do a likelihood ratio test between the Poisson and negative binomial models
anova(fm1, gm1)

8 GLMMadaptive

GLMMadaptive Generalized Linear Mixed Models using Adaptive Gaussian Quadra-
ture

Description

This package fits generalized linear mixed models for a single grouping factor under maximum
likelihood approximating the integrals over the random effects with an adaptive Gaussian quadrature
rule.

Details

Package: GLMMadaptive
Type: Package
Version: 0.9-5
Date: 2024-06-17
License: GPL (>=3)

This package fits mixed effects models for grouped / repeated measurements data for which the
integral over the random effects in the definition of the marginal likelihood cannot be solved ana-
lytically. The package approximates these integrals using the adaptive Gauss-Hermite quadrature
rule.

Multiple random effects terms can be included for the grouping factor (e.g., random intercepts, ran-
dom linear slopes, random quadratic slopes), but currently only a single grouping factor is allowed.

The package also offers several utility functions that can extract useful information from fitted
mixed effects models. The most important of those are included in the See also Section below.

Author(s)

Dimitris Rizopoulos

Maintainer: Dimitris Rizopoulos <d.rizopoulos@erasmusmc.nl>

References

Fitzmaurice, G., Laird, N. and Ware J. (2011). Applied Longitudinal Analysis, 2nd Ed. New York:
John Wiley & Sons.

Molenberghs, G. and Verbeke, G. (2005). Models for Discrete Longitudinal Data. New York:
Springer-Verlag.

See Also

mixed_model, methods.MixMod, effectPlotData, marginal_coefs

marginal_coefs 9

marginal_coefs Marginal Coefficients from Generalized Linear Mixed Models

Description

Calculates marginal coefficients and their standard errors from fitted generalized linear mixed mod-
els.

Usage

marginal_coefs(object, ...)

S3 method for class 'MixMod'
marginal_coefs(object, std_errors = FALSE,

link_fun = NULL, M = 3000, K = 100, seed = 1,
cores = max(parallel::detectCores() - 1, 1),
sandwich = FALSE, ...)

Arguments

object an object inheriting from class "MixMod".

std_errors logical indicating whether standard errors are to be computed.

link_fun a function transforming the mean of the repeated measurements outcome to
the linear predictor scale. Typically, this derived from the family argument
of mixed_model.

M numeric scalar denoting the number of Monte Carlo samples.

K numeric scalar denoting the number of samples from the sampling distribution
of the maximum likelihood estimates.

seed integer denoting the seed for the random number generation.

cores integer giving the number of cores to use; applicable only when std_errors =
TRUE.

sandwich logical; if TRUE robust/sandwich standard errors are used in the calculations.

... extra arguments; currently none is used.

Details

It uses the approach of Hedeker et al. (2017) to calculate marginal coefficients from mixed models
with nonlinear link functions. The marginal probabilities are calculated using Monte Carlo inte-
gration over the random effects with M samples, by sampling from the estimated prior distribution,
i.e., a multivariate normal distribution with mean 0 and covariance matrix D̂, where D̂ denotes the
estimated covariance matrix of the random effects.

To calculate the standard errors, the Monte Carlo integration procedure is repeated K times, where
each time instead of the maximum likelihood estimates of the fixed effects and the covariance
matrix of the random effects, a realization is used from the sampling distribution of the maximum
likelihood estimates. To speed-up this process, package parallel is used.

10 marginal_coefs

Value

A list of class "m_coefs" with components betas the marginal coefficients, and when std_errors
= TRUE, the extra components var_betas the estimated covariance matrix of the marginal coeffi-
cients, and coef_table a numeric matrix with the estimated marginal coefficients, their standard
errors and corresponding p-values using the normal approximation.

Author(s)

Dimitris Rizopoulos <d.rizopoulos@erasmusmc.nl>

References

Hedeker, D., du Toit, S. H., Demirtas, H. and Gibbons, R. D. (2018), A note on marginaliza-
tion of regression parameters from mixed models of binary outcomes. Biometrics 74, 354–361.
doi:10.1111/biom.12707

See Also

mixed_model

Examples

simulate some data
set.seed(123L)
n <- 500
K <- 15
t.max <- 25

betas <- c(-2.13, -0.25, 0.24, -0.05)
D <- matrix(0, 2, 2)
D[1:2, 1:2] <- c(0.48, -0.08, -0.08, 0.18)

times <- c(replicate(n, c(0, sort(runif(K-1, 0, t.max)))))
group <- sample(rep(0:1, each = n/2))
DF <- data.frame(year = times, group = factor(rep(group, each = K)))
X <- model.matrix(~ group * year, data = DF)
Z <- model.matrix(~ year, data = DF)

b <- cbind(rnorm(n, sd = sqrt(D[1, 1])), rnorm(n, sd = sqrt(D[2, 2])))
id <- rep(1:n, each = K)
eta.y <- as.vector(X %*% betas + rowSums(Z * b[id,]))
DF$y <- rbinom(n * K, 1, plogis(eta.y))
DF$id <- factor(id)

##

fm1 <- mixed_model(fixed = y ~ year * group, random = ~ 1 | id, data = DF,
family = binomial())

fixef(fm1)
marginal_coefs(fm1)

mixed_model 11

marginal_coefs(fm1, std_errors = TRUE, cores = 1L)

mixed_model Generalized Linear Mixed Effects Models

Description

Fits generalized linear mixed effects models under maximum likelihood using adaptive Gaussian
quadrature.

Usage

mixed_model(fixed, random, data, family, weights = NULL,
na.action = na.exclude, zi_fixed = NULL, zi_random = NULL,
penalized = FALSE, n_phis = NULL, initial_values = NULL,
control = list(), ...)

Arguments

fixed a formula for the fixed-effects part of the model, including the outcome.
random a formula for the random-effects part of the model. This should only contain

the right-hand side part, e.g., ~ time | id, where time is a variable, and id the
grouping factor. When the symbol || is used in the definition of this argument
(instead of |), then the covariance matrix of the random effects is assumed to be
diagonal.

data a data.frame containing the variables required in fixed and random.
family a family object specifying the type of the repeatedly measured response vari-

able, e.g., binomial() or poisson(). The function also allows for user-defined
family objects, but with specific extra components; see the example is negative.binomial
for more details. Contrary to the standard practice in model fitting R functions
with a family argument (e.g., glm) in which the default family is gaussian(),
in mixed_model() no default is provided. If the users wish to fit a mixed model
for a Gaussian outcome, this could be done with function lme() from the nlme
package or function lmer() from the lme4 package.

weights a numeric vector of weights. These are simple multipliers on the log-likelihood
contributions of each group/cluster, i.e., we presume that there are multiple repli-
cates of each group/cluster denoted by the weights. The length of ‘weights‘ need
to be equal to the number of independent groups/clusters in the data.

na.action what to do with missing values in data.
zi_fixed, zi_random

formulas for the fixed and random effects of the zero inflated part.
penalized logical or a list. If logical and equal to FALSE, then no penalty is used. If logical

and equal to TRUE, for the fixed effects a Student’s-t penalty/prior with mean 0,
scale equal to 1 and 3 degrees of freedom is used. If a list, then it is expected to
have the components pen_mu, pen_sigma and pen_df, denoting the mean, scale
and degrees of freedom of the Student’s-t penalty/prior for the fixed effects.

12 mixed_model

n_phis a numeric scalar; in case the family corresponds to a distribution that has extra
(dispersion/shape) parameters, you need to specify how many extra parameters
are needed.

initial_values a list of initial values. This can have up to three components, namely,

betas a numeric vector of fixed effects. This can also be family object. In
this case initial values for the fixed effects will be calculated by using glm
to the data ignoring the correlations in the repeated measurements. For
example, for a negative binomial response outcome, we could set betas =
poisson().

D a numeric matrix denoting the covariance matrix of the random effects.
phis a numeric vector for the extra (dispersion/shape) parameters.

control a list with the following components:

iter_EM numeric scalar denoting the number of EM iterations; default is 30.
iter_qN_outer numeric scalar denoting the number of outer iterations during

the quasi-Newton phase; default is 15. In each outer iteration the locations
of the quadrature points are updated.

iter_qN numeric scalar denoting the starting number of iterations for the quasi-
Newton; default is 10.

iter_qN_incr numeric scalar denoting the increment in iter_qN for each outer
iteration; default is 10.

optimizer character string denoting the optimizer to be used; available options
are "optim" (default), "nlminb" and "optimParallel", the last option
implemented in the optimParallel package.

optim_method character string denoting the type of optim algorithm to be used
when optimizer = "optim"; default is the BFGS algorithm.

parscale_betas the control argument parscale of optim for the fixed-effects;
default is 0.1.

parscale_D the control argument parscale of optim for the unique element of
the covariance matrix of the random effects; default is 0.01.

parscale_phis the control argument parscale of optim for the extra (disper-
sion/shape) parameters; default is 0.01.

tol1, tol2, tol3 numeric scalars controlling tolerances for declaring convergence;
tol1 and tol2 are for checking convergence in successive parameter val-
ues; tol3 is similar to reltop of optim; default values are 1e-03, 1e-04,
and 1e-08, respectively.

numeric_deriv character string denoting the type of numerical derivatives to
be used. Options are "fd" for forward differences, and cd for central dif-
ference; default is "fd".

nAGQ numeric scalar denoting the number of quadrature points; default is 11
when the number of random effects is one or two, and 7 otherwise.

update_GH_every numeric scalar denoting every how many iterations to up-
date the quadrature points during the EM-phase; default is 10.

max_coef_value numeric scalar denoting the maximum allowable value for the
fixed effects coefficients during the optimization; default is 10.

mixed_model 13

max_phis_value numeric scalar denoting the maximum allowable value for the
shape/dispersion parameter of the negative binomial distribution during the
optimization; default is exp(10).

verbose logical; print information during the optimization phase; default is
FALSE.

... arguments passed to control.

Details

General: The mixed_model() function fits mixed effects models in which the integrals over the
random effects in the definition of the marginal log-likelihood cannot be solved analytically and
need to be approximated. The function works under the assumption of normally distributed random
effects with mean zero and variance-covariance matrix D. These integrals are approximated nu-
merically using an adaptive Gauss-Hermite quadrature rule. Using the control argument nAGQ, the
user can specify the number of quadrature points used in the approximation.

User-defined family: The user can define its own family object; for an example, see the help page
of negative.binomial.

Optimization: A hybrid approach is used, starting with iter_EM iterations and unless convergence
was achieved it continuous with a direct optimization of the log-likelihood using function optim
and the algorithm specified by optim_method. For stability and speed, the derivative of the log-
likelihood with respect to the parameters are internally programmed.

Value

An object of class "MixMod" with components:

coefficients a numeric vector with the estimated fixed effects.

phis a numeric vector with the estimated extra parameters.

D a numeric matrix denoting the estimated covariance matrix of the random ef-
fects.

post_modes a numeric matrix with the empirical Bayes estimates of the random effects.

post_vars a list of numeric matrices with the posterior variances of the random effects.

logLik a numeric scalar denoting the log-likelihood value at the end of the optimization
procedure.

Hessian a numeric matrix denoting the Hessian matrix at the end of the optimization
procedure.

converged a logical indicating whether convergence was attained.

data a copy of the data argument.

id a copy of the grouping variable from data.

id_name a character string with the name of the grouping variable.

Terms a list with two terms components, termsX derived from the fixed argument,
and termsZ derived from the random argument.

model_frames a list with two model.frame components, mfX derived from the fixed argument,
and mfZ derived from the random argument.

14 mixed_model

control a copy of the (user-specific) control argument.

Funs a list of functions used in the optimization procedure.

family a copy of the family argument.

call the matched call.

Author(s)

Dimitris Rizopoulos <d.rizopoulos@erasmusmc.nl>

See Also

methods.MixMod, effectPlotData, marginal_coefs

Examples

simulate some data
set.seed(123L)
n <- 200
K <- 15
t.max <- 25

betas <- c(-2.13, -0.25, 0.24, -0.05)
D <- matrix(0, 2, 2)
D[1:2, 1:2] <- c(0.48, -0.08, -0.08, 0.18)

times <- c(replicate(n, c(0, sort(runif(K-1, 0, t.max)))))
group <- sample(rep(0:1, each = n/2))
DF <- data.frame(year = times, group = factor(rep(group, each = K)))
X <- model.matrix(~ group * year, data = DF)
Z <- model.matrix(~ year, data = DF)

b <- cbind(rnorm(n, sd = sqrt(D[1, 1])), rnorm(n, sd = sqrt(D[2, 2])))
id <- rep(1:n, each = K)
eta.y <- as.vector(X %*% betas + rowSums(Z * b[id,]))
DF$y <- rbinom(n * K, 1, plogis(eta.y))
DF$id <- factor(id)

##

fm1 <- mixed_model(fixed = y ~ year * group, random = ~ 1 | id, data = DF,
family = binomial())

fixed effects
fixef(fm1)

random effects
head(ranef(fm1))

detailed output
summary(fm1)

mixed_model 15

fitted values for the 'mean subject', i.e., with
random effects values equal to 0
head(fitted(fm1, type = "mean_subject"))

fitted values for the conditioning on the estimated random effects
head(fitted(fm1, type = "subject_specific"))

##############

fm2 <- mixed_model(fixed = y ~ year, random = ~ 1 | id, data = DF,
family = binomial())

likelihood ratio test between the two models
anova(fm2, fm1)

the same hypothesis but with a Wald test
anova(fm1, L = rbind(c(0, 0, 1, 0), c(0, 0, 0, 1)))

##############

An effects plot for the mean subject (i.e., with random effects equal to 0)
nDF <- with(DF, expand.grid(year = seq(min(year), max(year), length.out = 15),

group = levels(group)))

plot_data <- effectPlotData(fm2, nDF)

require("lattice")
xyplot(pred + low + upp ~ year | group, data = plot_data,

type = "l", lty = c(1, 2, 2), col = c(2, 1, 1), lwd = 2,
xlab = "Follow-up time", ylab = "log odds")

expit <- function (x) exp(x) / (1 + exp(x))
xyplot(expit(pred) + expit(low) + expit(upp) ~ year | group, data = plot_data,

type = "l", lty = c(1, 2, 2), col = c(2, 1, 1), lwd = 2,
xlab = "Follow-up time", ylab = "Probabilities")

An effects plots for the marginal probabilities
plot_data_m <- effectPlotData(fm2, nDF, marginal = TRUE, cores = 1L)

expit <- function (x) exp(x) / (1 + exp(x))
xyplot(expit(pred) + expit(low) + expit(upp) ~ year | group, data = plot_data_m,

type = "l", lty = c(1, 2, 2), col = c(2, 1, 1), lwd = 2,
xlab = "Follow-up time", ylab = "Probabilities")

##############

include random slopes
fm1_slp <- update(fm1, random = ~ year | id)

increase the number of quadrature points to 15
fm1_slp_q15 <- update(fm1_slp, nAGQ = 15)

a diagonal covariance matrix for the random effects

16 MixMod Methods

fm1_slp_diag <- update(fm1, random = ~ year || id)

anova(fm1_slp_diag, fm1_slp)

MixMod Methods Various Methods for Standard Generics

Description

Methods for object of class "MixMod" for standard generic functions.

Usage

coef(object, ...)

S3 method for class 'MixMod'
coef(object, sub_model = c("main", "zero_part"),

...)

fixef(object, ...)

S3 method for class 'MixMod'
fixef(object, sub_model = c("main", "zero_part"), ...)

ranef(object, ...)

S3 method for class 'MixMod'
ranef(object, post_vars = FALSE, ...)

confint(object, parm, level = 0.95, ...)

S3 method for class 'MixMod'
confint(object,
parm = c("fixed-effects", "var-cov","extra", "zero_part"),
level = 0.95, sandwich = FALSE, ...)

anova(object, ...)

S3 method for class 'MixMod'
anova(object, object2, test = TRUE,
L = NULL, sandwich = FALSE, ...)

fitted(object, ...)

S3 method for class 'MixMod'
fitted(object,

MixMod Methods 17

type = c("mean_subject", "subject_specific", "marginal"),
link_fun = NULL, ...)

residuals(object, ...)

S3 method for class 'MixMod'
residuals(object,
type = c("mean_subject", "subject_specific", "marginal"),
link_fun = NULL, tasnf_y = function (x) x, ...)

predict(object, ...)

S3 method for class 'MixMod'
predict(object, newdata, newdata2 = NULL,

type_pred = c("response", "link"),
type = c("mean_subject", "subject_specific", "marginal", "zero_part"),
se.fit = FALSE, M = 300, df = 10, scale = 0.3, level = 0.95,
seed = 1, return_newdata = FALSE, sandwich = FALSE, ...)

simulate(object, nsim = 1, seed = NULL, ...)

S3 method for class 'MixMod'
simulate(object, nsim = 1, seed = NULL,

type = c("subject_specific", "mean_subject"), new_RE = FALSE,
acount_MLEs_var = FALSE, sim_fun = NULL,
sandwich = FALSE, ...)

terms(x, ...)

S3 method for class 'MixMod'
terms(x, type = c("fixed", "random", "zi_fixed", "zi_random"), ...)

formula(x, ...)

S3 method for class 'MixMod'
formula(x, type = c("fixed", "random", "zi_fixed", "zi_random"), ...)

model.frame(formula, ...)

S3 method for class 'MixMod'
model.frame(formula, type = c("fixed", "random", "zi_fixed", "zi_random"), ...)

model.matrix(object, ...)

S3 method for class 'MixMod'
model.matrix(object, type = c("fixed", "random", "zi_fixed", "zi_random"), ...)

18 MixMod Methods

nobs(object, ...)

S3 method for class 'MixMod'
nobs(object, level = 1, ...)

VIF(object, ...)

S3 method for class 'MixMod'
VIF(object, type = c("fixed", "zi_fixed"), ...)

cooks.distance(model, ...)

S3 method for class 'MixMod'
cooks.distance(model, cores = max(parallel::detectCores() - 1, 1), ...)

Arguments

object, object2, x, formula, model
objects inheriting from class "MixMod". When object2 is also provided, then
the model behind object must be nested within the model behind object2.

sub_model character string indicating for which sub-model to extract the estimated coeffi-
cients; it is only relevant for zero-inflated models.

post_vars logical; if TRUE the posterior variances of the random effects are returned as an
extra attribute of the numeric matrix produced by ranef().

parm character string; for which type of parameters to calculate confidence intervals.
Option "var-cov" corresponds to the variance-covariance matrix of the random
effects. Option extra corresponds to extra (shape/dispersion) parameters in
the distribution of the outcome (e.g., the θ parameter in the negative binomial
family). Option zero_inflated corresponds to the coefficients of the zero-
inflated sub-model.

level numeric scalar between 0 and 1 denoting the level of the confidence interval. In
the nobs() method it denotes the level at which the number of observations is
counted. The value 0 corresponds to the number of independent sample units
determined by the number of levels of the grouping variable. If set to a value
greater than zero, it returns the total number of observations.

test logical; should a p-value be calculated.

L a numeric matrix representing a contrasts matrix. This is only used when in
anova() only object is provided, and it can only be specified for the fixed
effects. When L is used, a Wald test is performed.

sandwich logical; if TRUE the sandwich estimator is used in the calculation of standard
errors.

type character string indicating the type of fitted values / residuals / predictions / vari-
ance inflation factors to calculate. Option "mean_subject" corresponds to only
using the fixed-effects part; option "subject_specific" corresponds to using

MixMod Methods 19

both the fixed- and random-effects parts; option "marginal" is based in multi-
plying the fixed effects design matrix with the marginal coefficients obtained by
marginal_coefs.

link_fun the link_fun of marginal_coefs.

tasnf_y a function to transform the grouped / repeated measurements outcome before
calculating the residuals; for example, relevant in two-part models for semi-
continuous data, in which it is assumed that the log outcome follows a normal
distribution.

newdata, newdata2
a data frame based on which predictions are to be calculated. newdata2 is only
relevant when level = "subject_specific"; see Details for more informa-
tion.

type_pred character string indicating at which scale to calculate predictions. Options are
"link" indicating to calculate predictions at the link function / linear predictor
scale, and "response" indicating to calculate predictions at the scale of the
response variable.

se.fit logical, if TRUE standard errors of predictions are returned.

M numeric scalar denoting the number of Monte Carlo samples; see Details for
more information.

df numeric scalar denoting the degrees of freedom for the Student’s t proposal dis-
tribution; see Details for more information.

scale numeric scalar or vector denoting the scaling applied to the subject-specific co-
variance matrices of the random effects; see Details for more information.

seed numerical scalar giving the seed to be used in the Monte Carlo scheme.

return_newdata logical; if TRUE the predict() method returns a copy of the newdata and of
newdata2 if the corresponding argument was not NULL, with extra columns the
predictions, and the lower and upper limits of the cofidence intervals when type
= "subject_specific".

nsim numeric scalar giving the number of times to simulate the response variable.

new_RE logical; if TRUE, new random effects will be simulated, and new outcome data
will be simulated by simulate() using these new random effect. Otherwise,
the empirical Bayes estimates of the random effects from the fitted model will
be used.

acount_MLEs_var

logical; if TRUE it accounts for the variability of the maximum likelihood esti-
mates (MLEs) by simulating a new value for the parameters from a multivariate
normal distribution with mean the MLEs and covariance matrix the covariance
matrix of the MLEs.

sim_fun a function based on which to simulate the response variable. This is relevant
for non-standard models. The simulate() function also tries to extract this
function from the family component of object. The function should have the
following four arguments: n a numeric scalar denoting the number of observa-
tions to simulate, mu a numeric vector of means, phis a numeric vector of extra
dispersion/scale parameters, and eta_zi a numeric vector for the zero-part of
the model, if this is relevant.

20 MixMod Methods

cores the number of cores to use in the computation.
... further arguments; currently none is used.

Details

In generic terms, we assume that the mean of the outcome yi (i = 1, ..., n denotes the subjects)
conditional on the random effects is given by the equation:

gE(yi|bi) = ηi = Xiβ + Zibi,

where g(.) denotes the link function, bi the vector of random effects, β the vector of fixed effects,
and Xi and Zi the design matrices for the fixed and random effects, respectively.

Argument type_pred of predict() specifies whether predictions will be calculated in the link /
linear predictor scale, i.e., ηi or in the response scale, i.e., gE(yi|bi).
When type = "mean_subject", predictions are calculated using only the fixed effects, i.e., the Xiβ
part, where Xi is evaluated in newdata. This corresponds to predictions for the ’mean’ subjects,
i.e., subjects who have random effects value equal to 0. Note, that in the case of nonlinear link
functions this does not correspond to the averaged over the population predictions (i.e., marginal
predictions).

When type = "marginal", predictions are calculated using only the fixed effects, i.e., the Xiβ part,
where Xi is evaluated in newdata, but with β coefficients the marginalized coefficients obtain from
marginal_coefs. These predictions will be marginal / population averaged predictions.

When type = "zero_part", predictions are calculated for the logistic regression of the extra zero-
part of the model (i.e., applicable for zero-inflated and hurdle models).

When type = "subject_specific", predictions are calculated using both the fixed- and random-
effects parts, i.e., Xiβ+Zibi, where Xi and Zi are evaluated in newdata. Estimates for the random
effects of each subject are obtained as modes from the posterior distribution [bi|yi; θ] evaluated in
newdata and with theta (denoting the parameters of the model, fixed effects and variance compo-
nents) replaced by their maximum likelihood estimates.

Notes: (i) When se.fit = TRUE and type_pred = "response", the standard errors returned are on
the linear predictor scale, not the response scale. (ii) When se.fit = TRUE and the model contains
an extra zero-part, no standard errors are computed when type = "mean_subject". (iii) When the
model contains an extra zero-part, type = "marginal" predictions are not yet implemented.

When se.fit = TRUE and type = "subject_specific", standard errors and confidence intervals
for the subject-specific predictions are obtained by a Monte Carlo scheme entailing three steps
repeated M times, namely

Step I Account for the variability of maximum likelihood estimates (MLES) by simulating a new
value θ∗ for the parameters θ from a multivariate normal distribution with mean the MLEs and
covariance matrix the covariance matrix of the MLEs.

Step II Account for the variability in the random effects estimates by simulating a new value b∗i
for the random effects bi from the posterior distribution [bi|yi; θ∗]. Because the posterior
distribution does not have a closed-form, a Metropolis-Hastings algorithm is used to sample
the new value b∗i using as proposal distribution a multivariate Student’s-t distribution with
degrees of freedom df, centered at the mode of the posterior distribution [bi|yi; θ] with θ the
MLEs, and scale matrix the inverse Hessian matrix of the log density of [bi|yi; θ] evaluated at
the modes, but multiplied by scale. The scale and df parameters can be used to adjust the
acceptance rate.

MixMod Methods 21

Step III The predictions are calculated using Xiβ
∗ + Zib

∗
i .

Argument newdata2 can be used to calculate dynamic subject-specific predictions. I.e., using the
observed responses yi in newdata, estimates of the random effects of each subject are obtained. For
the same subjects we want to obtain predictions in new covariates settings for which no response
data are yet available. For example, in a longitudinal study, for a subject we have responses up to a
follow-up t (newdata) and we want the prediction at t+∆t (newdata2).

Value

The estimated fixed and random effects, coefficients (this is similar as in package nlme), confidence
intervals fitted values (on the scale on the response) and residuals.

Author(s)

Dimitris Rizopoulos <d.rizopoulos@erasmusmc.nl>

See Also

mixed_model, marginal_coefs

Examples

simulate some data
set.seed(123L)
n <- 500
K <- 15
t.max <- 25

betas <- c(-2.13, -0.25, 0.24, -0.05)
D <- matrix(0, 2, 2)
D[1:2, 1:2] <- c(0.48, -0.08, -0.08, 0.18)

times <- c(replicate(n, c(0, sort(runif(K-1, 0, t.max)))))
group <- sample(rep(0:1, each = n/2))
DF <- data.frame(year = times, group = factor(rep(group, each = K)))
X <- model.matrix(~ group * year, data = DF)
Z <- model.matrix(~ year, data = DF)

b <- cbind(rnorm(n, sd = sqrt(D[1, 1])), rnorm(n, sd = sqrt(D[2, 2])))
id <- rep(1:n, each = K)
eta.y <- as.vector(X %*% betas + rowSums(Z * b[id,]))
DF$y <- rbinom(n * K, 1, plogis(eta.y))
DF$id <- factor(id)

##

fm1 <- mixed_model(fixed = y ~ year + group, random = ~ year | id, data = DF,
family = binomial())

head(coef(fm1))
fixef(fm1)

22 negative.binomial

head(ranef(fm1))

confint(fm1)
confint(fm1, "var-cov")

head(fitted(fm1, "subject_specific"))
head(residuals(fm1, "marginal"))

fm2 <- mixed_model(fixed = y ~ year * group, random = ~ year | id, data = DF,
family = binomial())

likelihood ratio test between fm1 and fm2
anova(fm1, fm2)

the same but with a Wald test
anova(fm2, L = rbind(c(0, 0, 0, 1)))

negative.binomial Family function for Negative Binomial Mixed Models

Description

Specifies the information required to fit a Negative Binomial generalized linear mixed model, using
mixed_model().

Usage

negative.binomial()

Note

Currently only the log-link is implemented.

Author(s)

Dimitris Rizopoulos <d.rizopoulos@erasmusmc.nl>

Examples

simulate some data
set.seed(102)
dd <- expand.grid(f1 = factor(1:3), f2 = LETTERS[1:2], g = 1:30, rep = 1:15,

KEEP.OUT.ATTRS = FALSE)
mu <- 5 * (-4 + with(dd, as.integer(f1) + 4 * as.numeric(f2)))
dd$y <- rnbinom(nrow(dd), mu = mu, size = 0.5)

gm1 <- mixed_model(fixed = y ~ f1 * f2, random = ~ 1 | g, data = dd,
family = negative.binomial())

negative.binomial 23

summary(gm1)

We do a likelihood ratio test with the Poisson mixed model
gm0 <- mixed_model(fixed = y ~ f1 * f2, random = ~ 1 | g, data = dd,

family = poisson())

anova(gm0, gm1)

Define a cutom-made family function to be used with mixed_model()
the required components are 'family', 'link', 'linkfun', 'linkinv' and 'log_dens';
the extra functions 'score_eta_fun' and 'score_phis_fun' can be skipped and will
internally approximated using numeric derivatives (though it is better that you provide
them).
my_negBinom <- function (link = "log") {

stats <- make.link(link)
log_dens <- function (y, eta, mu_fun, phis, eta_zi) {

the log density function
phis <- exp(phis)
mu <- mu_fun(eta)
log_mu_phis <- log(mu + phis)
comp1 <- lgamma(y + phis) - lgamma(phis) - lgamma(y + 1)
comp2 <- phis * log(phis) - phis * log_mu_phis
comp3 <- y * log(mu) - y * log_mu_phis
out <- comp1 + comp2 + comp3
attr(out, "mu_y") <- mu
out

}
score_eta_fun <- function (y, mu, phis, eta_zi) {

the derivative of the log density w.r.t. mu
phis <- exp(phis)
mu_phis <- mu + phis
comp2 <- - phis / mu_phis
comp3 <- y / mu - y / mu_phis
the derivative of mu w.r.t. eta (this depends on the chosen link function)
mu.eta <- mu
(comp2 + comp3) * mu.eta

}
score_phis_fun <- function (y, mu, phis, eta_zi) {

the derivative of the log density w.r.t. phis
phis <- exp(phis)
mu_phis <- mu + phis
comp1 <- digamma(y + phis) - digamma(phis)
comp2 <- log(phis) + 1 - log(mu_phis) - phis / mu_phis
comp3 <- - y / mu_phis
comp1 + comp2 + comp3

}
structure(list(family = "user Neg Binom", link = stats$name, linkfun = stats$linkfun,

linkinv = stats$linkinv, log_dens = log_dens,
score_eta_fun = score_eta_fun,
score_phis_fun = score_phis_fun),

class = "family")
}

24 scoring_rules

fm <- mixed_model(fixed = y ~ f1 * f2, random = ~ 1 | g, data = dd,
family = my_negBinom(), n_phis = 1,
initial_values = list("betas" = poisson()))

summary(fm)

scoring_rules Proper Scoring Rules for Categorical Data

Description

Calculates the logarithmic, quadratic/Brier and spherical based on a fitted mixed model for categor-
ical data.

Usage

scoring_rules(object, newdata, newdata2 = NULL, max_count = 2000,
return_newdata = FALSE)

Arguments

object an object inheriting from class "MixMod".

newdata a data.frame based on which to estimate the random effect and calculate predic-
tions. It should contain the response variable.

newdata2 a data.frame based on which to estimate the random effect and calculate predic-
tions. It should contain the response variable.

max_count numeric scalar denoting the maximum count up to which to calculate probabili-
ties; this is relevant for count response data.

return_newdata logical; if TRUE the values of the scoring rules are ruturned as extra columns of
the newdata or newdata2 data.frame.

Value

A data.frame with (extra) columns the values of the logarithmic, quadratic and spherical scoring
rules calculated based on the fitted model and the observed responses in newdata or newdata2.

Author(s)

Dimitris Rizopoulos <d.rizopoulos@erasmusmc.nl>

References

Carvalho, A. (2016). An overview of applications of proper scoring rules. Decision Analysis 13,
223–242. doi:10.1287/deca.2016.0337

scoring_rules 25

See Also

mixed_model, predict.MixMod

Examples

NA
NA
NA

Index

∗ multivariate
GLMMadaptive, 8

∗ package
GLMMadaptive, 8

anova (MixMod Methods), 16

beta.binomial (Extra Family Objects), 6
beta.fam (Extra Family Objects), 6

censored.normal (Extra Family Objects),
6

coef (MixMod Methods), 16
confint (MixMod Methods), 16
Continuation Ratio Set-Up, 2
cooks.distance (MixMod Methods), 16
cr_marg_probs, 4
cr_marg_probs (Continuation Ratio

Set-Up), 2
cr_setup (Continuation Ratio Set-Up), 2

effectPlotData, 4, 8, 14
Extra Family Objects, 6

family, 11, 12
fitted (MixMod Methods), 16
fixef (MixMod Methods), 16
formula (MixMod Methods), 16

Gamma.fam (Extra Family Objects), 6
glm, 11, 12
GLMMadaptive, 8
GLMMadaptive-package (GLMMadaptive), 8

hurdle.beta.fam (Extra Family Objects),
6

hurdle.lognormal (Extra Family
Objects), 6

hurdle.negative.binomial (Extra Family
Objects), 6

hurdle.poisson (Extra Family Objects), 6

marginal_coefs, 4, 5, 8, 9, 14, 19–21
methods.MixMod, 8, 14
methods.MixMod (MixMod Methods), 16
mixed_model, 5, 8–10, 11, 21, 25
MixMod Methods, 16
model.frame (MixMod Methods), 16
model.matrix (MixMod Methods), 16

negative.binomial, 11, 13, 22
nobs (MixMod Methods), 16

optim, 12, 13

predict (MixMod Methods), 16
predict.MixMod, 25

ranef (MixMod Methods), 16
residuals (MixMod Methods), 16

scoring_rules, 24
simulate (MixMod Methods), 16
students.t (Extra Family Objects), 6

terms (MixMod Methods), 16

unit.lindley (Extra Family Objects), 6

VIF (MixMod Methods), 16

zi.binomial (Extra Family Objects), 6
zi.negative.binomial (Extra Family

Objects), 6
zi.poisson (Extra Family Objects), 6

26

	Continuation Ratio Set-Up
	effectPlotData
	Extra Family Objects
	GLMMadaptive
	marginal_coefs
	mixed_model
	MixMod Methods
	negative.binomial
	scoring_rules
	Index

